The power ratio and the interval map: spiking models and extracellular recordings.
نویسندگان
چکیده
We describe a new, computationally simple method for analyzing the dynamics of neuronal spike trains driven by external stimuli. The goal of our method is to test the predictions of simple spike-generating models against extracellularly recorded neuronal responses. Through a new statistic called the power ratio, we distinguish between two broad classes of responses: (1) responses that can be completely characterized by a variable firing rate, (for example, modulated Poisson and gamma spike trains); and (2) responses for which firing rate variations alone are not sufficient to characterize response dynamics (for example, leaky integrate-and-fire spike trains as well as Poisson spike trains with long absolute refractory periods). We show that the responses of many visual neurons in the cat retinal ganglion, cat lateral geniculate nucleus, and macaque primary visual cortex fall into the second class, which implies that the pattern of spike times can carry significant information about visual stimuli. Our results also suggest that spike trains of X-type retinal ganglion cells, in particular, are very similar to spike trains generated by a leaky integrate-and-fire model with additive, stimulus-independent noise that could represent background synaptic activity.
منابع مشابه
Efficiency Analysis Based on Separating Hyperplanes for Improving Discrimination among DMUs
Data envelopment analysis (DEA) is a non-parametric method for evaluating the relative technical efficiency for each member of a set of peer decision making units (DMUs) with multiple inputs and multiple outputs. The original DEA models use positive input and output variables that are measured on a ratio scale, but these models do not apply to the variables in which interval scale data can appe...
متن کاملImproving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملProtective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node of rabbit
Introduction: Recent studies have shown acute cardioprotective effects of cyclosporine. The aim of the present study was to determine the protective role of cyclosporine on the model simulated the rotational nodal arrhythmia (AVNRT) by using extracellular field potential recordings of isolated atrioventricular-node (AV-node) of rabbit. Methods: This study was performed on isolated double-per...
متن کاملDEA Models with Interval Scale Inputs and Outputs
This paper proposes an alternative approach for efficiency analysis when a set of DMUs uses interval scale variables in the productive process. To test the influence of these variables, we present a general approach of deriving DEA models to deal with the variables. We investigate a number of performance measures with unrestricted-in-sign interval and/or interval scale variables.
متن کاملاPerformance Assessment of South Fars Power Generation Management Company by using of Data Envelopment Analysis with Interval Data and Undesirable Outputs
Due to the power industry importance in the process of country economic development,studying the efficiency of power plant s is very important. By measuring the efficiency canbe perceived the strength and awareness of different sectors and can improve theirperformance by provide the appropriate solutions. In this paper, power plants was assumedas a decision-making unit that consume gas and gaso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 18 23 شماره
صفحات -
تاریخ انتشار 1998